Prediction of atrial fibrillation and stroke using machine learning models in UK Biobank

Author:

Papadopoulou A.ORCID,Harding D.,Slabaugh G.,Marouli E.ORCID,Deloukas P.

Abstract

AbstractWe employed machine learning (ML) approaches to evaluate 2,199 clinical features and disease phenotypes available in the UK Biobank as predictors for Atrial Fibrillation (AF) risk. After quality control, 99 features were selected for analysis in 21,279 prospective AF cases and equal number of controls. Different ML methods were employed, including LightGBM, XGBoost, Random Forest (RF), Deep Neural Network (DNN),) and Logistic Regression with L1 penalty (LR). In order to eliminate the black box character of the tree-based ML models, we employed Shapley-values (SHAP), which are used to estimate the contribution of each feature to AF prediction. The area-under-the-roc-curve (AUROC) values and the 95% confidence intervals (CI) per model were: 0.729 (0.719, 0.738) for LightGBM, 0.728 (0.718, 0.737) for XGBoost, 0.716 (0.706,0.725) for DNN, 0.715 (0.706, 0.725) for RF and 0.622 (0.612, 0.633) for LR. Considering the running time, memory and stability of each algorithm, LightGBM was the best performing among those examined. DeLongs test showed that there is statistically significant difference in the AUROCs between penalised LR and the other ML models. Among the top important features identified for LightGBM, using SHAP analysis, are the genetic risk score (GRS) of AF and age at recruitment. As expected, the AF GRS had a positive impact on the model output, i.e. a higher AF GRS increased AF risk. Similarly, age at recruitment also had a positive impact increasing AF risk. Secondary analysis was performed for the individuals who developed ischemic stroke after AF diagnosis, employing 129 features in 3,150 prospective cases of people who developed ischemic stroke after AF, and equal number of controls in UK Biobank. The AUC values and the 95% CI per model were: 0.631 (0.604, 0.657) for XGBoost, 0.620 (0.593, 0.647) for LightGBM, 0.599 (0.573, 0.625) for RF, 0.599 (0.572, 0.624) for SVM, 0.589 (0.562, 0.615) for DNN and 0.563 (0.536, 0.591) for penalised LR. DeLongs test showed that there is no evidence for significant difference in the AUROCs between XGBoost and all other examined ML models but the penalised LR model (pvalue=2.00 E-02). Using SHAP analysis for XGBoost, among the top important features are age at recruitment and glycated haemoglobin. DeLongs test showed that there is evidence for statistically significant difference between XGBoost and the current clinical tool for ischemic stroke prediction in AF patients, CHA2DS2-VASc (pvalue=2.20E-06), which has AUROC and 95% CI of 0.611 (0.585, 0.638).

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3