The Western Lake Erie Culture Collection: A promising resource for evaluating the physiological and genetic diversity ofMicrocystisand its associated microbiome

Author:

Yancey Colleen E.ORCID,Kiledal E. AndersORCID,Denef Vincent J.,Errera Reagan M.,Evans Jacob T.,Hart Lauren,Isailovic Dragan,James William,Kharbush Jenan K.,Kimbrel Jeffrey A,Li Wei,Mayali Xavier,Nitschky Helena,Polik Catherine,Powers McKenzie A,Premathilaka Sanduni H.,Rappuhn Nicole,Reitz Laura A.,Rivera Sara R.,Zwiers Claire C.,Dick Gregory J.ORCID

Abstract

AbstractCyanobacteria harmful algal blooms (cyanoHABs) dominated byMicrocystisspp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 unialgalMicrocystiscultures collected from western Lake Erie between 2017-2019. While some cultures isolated in different years have a high degree of genetic similarity (Average Nucleotide Identity >99%), genomic data shows that these cultures also represent much of the breadth of knownMicrocystisdiversity in natural populations. Only 5 isolates contained all the genes required for microcystin synthesis while 2 isolates contained a previously described partialmcyoperon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 μg L-1) in cultures with completemcyoperons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated withMicrocystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity amongMicrocystisstrains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This collection significantly increases the availability of environmentally relevantMicrocystisstrains from temperate North America, which is changing rapidly due to climate change.HighlightsTwenty one xenicMicrocystiscultures were isolated from western Lake Erie and capture the diversity ofMicrocystisstrains observed in natural populations as well as their associated bacteriaMicrocystisstrains show variability in core and accessory gene content, and genetically similar strains produce varying concentrations and congeners of microcystinsThis collection is a valuable resource for studying strain diversity and interactions betweenMicrocystisand associated bacteriaOur collection increases the availability of environmentally relevant strains from temperate North America, which is historically underrepresented in culture collections.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3