Abstract
AbstractThere is significant evidence suggesting aggregated misfolded alpha-synuclein, a major component of Lewy bodies, propagates in a prion-like manner contributing to disease progression in Parkinson’s disease (PD) and other synucleinopathies. Animal models are essential for understanding and developing treatments for these diseases. However, despite modelling human pathology, most endpoints studied in mice do not translate to humans. Furthermore, the progression by which alpha-synuclein misfolding affects human-relevant measures such as brain volume and underlying subtle, high-level cognitive deficits is poorly understood. Here we used a mouse model of synucleinopathy; hemizygous M83 human A53T alpha-synuclein transgenic mice inoculated with recombinant human alpha-synuclein preformed fibrils (PFF) injected in the right striatum to initiate alpha-synuclein misfolding and aggregation. We examined alpha-synuclein-induced atrophy at 90 days post-injection usingex vivomagnetic resonance imaging as well as high-level cognition and motor function, as biomarkers of alpha-synuclein toxicity. We observed widespread atrophy in bilateral regions that project to or receive input from the injection site, highlighting a network of regions that are consistent with structural changes observed in humans with PD. Moreover, we detected early deficits in reversal learning with touchscreen testing in PFF-injected mice prior to motor dysfunction, consistent with the pathology observed in cortical-striatal and thalamic loops. We show, using translational approaches in mice, that progression of prion-like spreading of alpha-synuclein causes selective atrophy via connected brain regions leading to high-level cognitive deficits. We propose that precise imaging and cognitive biomarkers can provide a more direct and human-relevant measurement of alpha-synuclein-induced toxicity in pre-clinical testing.Significance StatementThe work described in this manuscript showcases the utility of state-of-the-art methodologies (magnetic resonance imaging and touchscreen behavioural tasks) to examine endophenotypes, both in terms of symptomatology and neuroanatomy, of alpha-synuclein propagation in a mouse model of synucleinopathy. Our work further validates the M83-Hu-PFF mouse model of synucleinopathy-associated pathogenesis of neurodegenerative diseases while highlighting precise imaging and cognitive biomarkers of protein misfolding toxicity. Specifically, we identified rapid and translational biomarkers that can serve as a proxy for the direct examination of cellular levels for pathology. We anticipate that these biomarkers can measure progression of toxicity, specifically in the early phases, and may be more reliable than end stage pathology and more useful as endpoints in the examination of novel therapeutics.
Publisher
Cold Spring Harbor Laboratory