PhenoScore: AI-based phenomics to quantify rare disease and genetic variation

Author:

Dingemans Alexander J M,Hinne Max,Truijen Kim M G,Goltstein Lia,van Reeuwijk Jeroen,de Leeuw Nicole,Schuurs-Hoeijmakers Janneke,Pfundt Rolph,Diets Illja J,den Hoed Joery,de Boer Elke,Coenen-van der Spek Jet,Jansen Sandra,van Bon Bregje W,Jonis Noraly,Ockeloen Charlotte,Vulto-van Silfhout Anneke T,Kleefstra Tjitske,Koolen David A,Van Esch Hilde,Lyon Gholson J,Alkuraya Fowzan S,Rauch Anita,Marom Ronit,Baralle Diana,van der Sluijs Pleuntje J,Santen Gijs W E,Kooy R Frank,van Gerven Marcel A J,Vissers Lisenka E L M,de Vries Bert B A

Abstract

AbstractWhile both molecular and phenotypic data are essential when interpreting genetic variants, prediction scores (CADD, PolyPhen, and SIFT) have focused on molecular details to evaluate pathogenicity — omitting phenotypic features. To unlock the full potential of phenotypic data, we developed PhenoScore: an open source, artificial intelligence-based phenomics framework. PhenoScore combines facial recognition technology with Human Phenotype Ontology (HPO) data analysis to quantify phenotypic similarity at both the level of individual patients as well as of cohorts. We prove PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 25 out of 26 investigated genetic syndromes against clinical features observed in individuals with other neurodevelopmental disorders. Moreover, PhenoScore was able to provide objective clinical evidence for two distinctADNP-related phenotypes, that had already been established functionally, but not yet phenotypically. Hence, PhenoScore will not only be of use to unbiasedly quantify phenotypes to assist genomic variant interpretation at the individual level, such as for reclassifying variants of unknown clinical significance, but is also of importance for detailed genotype-phenotype studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tagungsbericht Genomics of Rare Disease 2024 Conference;Medizinische Genetik;2024-06-05

2. Facilitating the Molecular Diagnosis of Rare Genetic Disorders Through Facial Phenotypic Scores;Current Protocols;2023-10

3. Computational facial analysis for rare Mendelian disorders;American Journal of Medical Genetics Part C: Seminars in Medical Genetics;2023-08-16

4. The future role of facial image analysis in ACMG classification guidelines;Medizinische Genetik;2023-06-01

5. The Genetics of Intellectual Disability;Brain Sciences;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3