Pharmacologic Inhibition of DYRK1A Results in MYC Hyperactivation and ERK Hyperphosphorylation rendering KMT2A-R ALL Cells Sensitive to BCL2 Inhibition

Author:

Hurtz Christian,Ayyadevara V. S. S. Abhinav,Wertheim Gerald,Chukinas John A,Loftus Joseph P,Lee Sung June,Kumar Anil,Bhansali Rahul S,Swaminathan Srividya,Geng Huimin,Milne ThomasORCID,Hua Xianxin,Bernt Kathrin M,Besson Thierry,Shi Junwei,Crispino John D.,Carroll MartinORCID,Tasian Sarah K

Abstract

AbstractKMT2A-rearranged (KMT2A-R) B cell acute lymphoblastic leukemia (ALL) is a high-risk disease in children and adults that is often chemotherapy resistant. To identify non-cytotoxic approaches to therapy, we performed a domain-specific kinome-wide CRISPR screen in KMT2A-R cell lines and patient derived xenograft samples (PDX) and identified dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) as a potential target. Pharmacologic inhibition of the KMT2A-fusion transcriptional co-regulator Menin released the KMT2A-fusion complex from the DYRK1A promoter thereby lowering DYRK1A expression levels confirming DYRK1A as a direct target of the KMT2A fusion oncogene. Direct pharmacologic inhibition of DYRK1A decreased cell proliferation of KMT2A-R ALL, thereby confirming the requirement of DYRK1A in this ALL subtype. To further understand the biologic function of DYRK1A in KMT2A-R ALL, we leveraged pharmacologic DYRK1A inhibitors in KMT2A-R PDX and cell line models. DYRK1A inhibition consistently led to upregulation of MYC protein levels, and hyperphosphorylation of ERK, which we confirmed via in vivo treatment experiments. Furthermore, DYRK1A inhibition decreased ALL burden in mice. Our results further demonstrate that DYRK1A inhibition induces the proapoptotic factor BIM, but ERK hyperphosphorylation is the driving event that induces cell cycle arrest. In contrast, combined treatment of KMT2A-R ALL cells in vitro and in vivo with DYRK1A inhibitors and the BCL2 inhibitor, venetoclax, synergistically decreases cell survival and reduced the leukemic burden in mice. Taken together these results demonstrate a unique function of DYRK1A specially in KMT2A-R ALL. Synergistic inhibition of DRYK1A and BCL2 may provide a low-toxic approach to treat this high risk ALL subtype.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3