Abstract
AbstractPharmacogenomics (PGx)-guided drug treatment is one of the cornerstones of personalized medicine. However, the genes involved in drug response are highly complex and known to carry many (rare) variants. Current technologies (short-read sequencing and SNP panels) are limited in their ability to resolve these genes and characterize all variants. Moreover, these technologies cannot always phase variants to their allele of origin. Recent advance in long-read sequencing technologies have shown promise in resolving these problems. Here we present a long-read sequencing panel-based approach for PGx using PacBio HiFi sequencing.A capture based approach was developed using a custom panel of clinically-relevant pharmacogenes including up- and downstream regions. A total of 27 samples were sequenced and panel accuracy was determined using benchmarking variant calls for 3 Genome in a Bottle samples and GeT-RM star(*)-allele calls for 21 samples..The coverage was uniform for all samples with an average of 94% of bases covered at >30×. When compared to benchmarking results, accuracy was high with an average F1 score of 0.89 for INDELs and 0.98 for SNPs. Phasing was good with an average of 68% the target region phased (compared to ~20% for short-reads) and an average phased haploblock size of 6.6kbp. Using Aldy 4, we compared our variant calls to GeT-RM data for 8 genes (CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP3A5, SLCO1B1, TPMT), and observed highly accurate star(*)-allele calling with 98.2% concordance (165/168 calls), with only one discordance inCYP2C9leading to a different predicted phenotype.We have shown that our long-read panel-based approach results in high accuracy and target phasing for SNVs as well as for clinical star(*)-alleles.
Publisher
Cold Spring Harbor Laboratory