Author:
Teichner Ron,Shomar Aseel,Barak O.,Brenner N.,Marom S.,Meir R.,Eytan D.
Abstract
AbstractHomeostasis, the ability to maintain a relatively constant internal environment in the face of perturbations, is a hallmark of biological systems. It is believed that this constancy is achieved through multiple internal regulation and control processes. Given observations of a system, or even a detailed model of one, it is both valuable and extremely challenging to extract the control objectives of the homeostatic mechanisms. In this work, we develop a robust data-driven method to identify these objectives, namely to understand: “what does the system care about?”. We propose an algorithm, Identifying Regulation with Adversarial Surrogates (IRAS), that receives an array of temporal measurements of the system, and outputs a candidate for the control objective, expressed as a combination of observed variables. IRAS is an iterative algorithm consisting of two competing players. The first player, realized by an artificial deep neural network, aims to minimize a measure of invariance we refer to as the coefficient of regulation. The second player aims to render the task of the first player more difficult by forcing it to extract information about the temporal structure of the data, which is absent from similar ‘surrogate’ data. We test the algorithm on two synthetic and one natural data set, demonstrating excellent empirical results. Interestingly, our approach can also be used to extract conserved quantities, e.g., energy and momentum, in purely physical systems, as we demonstrate empirically.
Publisher
Cold Spring Harbor Laboratory
Reference34 articles.
1. Noether networks: meta-learning useful conserved quantities;Advances in Neural Information Processing Systems,2021
2. Åström, K. J. (2012). Introduction to stochastic control theory. Courier Corporation.
3. Å ström, K. J. and Murray, R. M. (2021). Feedback systems: an introduction for scientists and engineers. Princeton university press.
4. Billman, G. E. (2020). Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Frontiers in Physiology, page 200.
5. A compositional object-based approach to learning physical dynamics;arXiv preprint,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献