Talin and kindlin cooperate to control the density of integrin clusters

Author:

Pernier JulienORCID,Dos Santos Marcelina CardosoORCID,Souissi Mariem,Joly Adrien,Narassimprakash Hemalatha,Rossier OlivierORCID,Giannone GrégoryORCID,Helfer EmmanuèleORCID,Sengupta KheyaORCID,Le Clainche ChristopheORCID

Abstract

AbstractFocal adhesions are important mechanosensitive structures, composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Cellular adhesion to the extracellular matrix depends on the activation of integrins by intracellular mechanisms. Talin and kindlin are major activators of integrins that are recruited to the inner membrane and bind to β-integrin cytoplasmic tails. Many studies showed the importance of integrin activation and clustering and how the organization of extracellular ligands guides the nanoscale organization of adhesion complexes. However, the roles of talin and kindlin in this process are poorly understood. To determine the contribution of talin, kindlin, lipids and actomyosin in integrin clustering, we performed experiments using a biomimetic in vitro system, made of Giant Unilamellar Vesicles, containing transmembrane integrins, on which purified talin, kindlin, and actomyosin assemble. Here we first show that talin and kindlin individually have the ability to cluster integrins. When added together, talin and kindlin synergize to induce the formation of larger integrin clusters containing the three proteins. Comparison of protein density in the talin-integrin, kindlin-integrin, and talin-kindlin-integrin clusters reveals that kindlin increases talin and integrin density, whereas talin does not affect kindlin and integrin density. Finally, kindlin significantly enhances the segregation of talin-integrin clusters induced by actomyosin contractility, suggesting that it increases the coupling of these clusters to the actin cytoskeleton. Our study unambiguously demonstrates how kindlin and talin cooperate to induce integrin clustering, which is a major parameter for cell adhesion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3