Distinct contact guidance mechanisms in single endothelial cells and in monolayers

Author:

Leclech ClaireORCID,Krishnamurthy Apoorvaa,Muller LaurentORCID,Barakat Abdul I.ORCID

Abstract

AbstractIn many tissues, cell shape and orientation are controlled by a combination of internal and external biophysical cues. Anisotropic substrate topography is a ubiquitous cue that leads to cellular elongation and alignment, a process termed contact guidance, whose underlying mechanisms remain incompletely understood. Additionally, whether contact guidance responses are similar in single cells and in cellular monolayers is unknown. Here, we address these questions in vascular endothelial cells (ECs) thatin vivoform a monolayer that lines blood vessels. Culturing single ECs on microgrooved substrates that constitute an idealized mimic of anisotropic basement membrane topography elicits a strong, groove depth-dependent contact guidance response. Interestingly, this response is greatly attenuated in confluent monolayers. While contact guidance in single cells is principally driven by persistence bias of cell protrusions in the direction of the grooves and is surprisingly insensitive to actin stress fiber disruption, cell shape and alignment in dense EC monolayers are driven by the organization of the basement membrane secreted by the cells, which leads to a loss of interaction with the microgrooves. The findings of distinct contact guidance mechanisms in single ECs and in EC monolayers promise to inform strategies aimed at designing topographically patterned endovascular devices.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3