Biophysical characterisation of the structure of a SARS-CoV-2 self-amplifying - RNA (saRNA) vaccine

Author:

Myatt Daniel PORCID,Wharram Lewis,Graham Charlotte,Liddell John,Branton Harvey,Pizzey Claire,Cowieson Nathan,Rambo Robert,Shattock Robin J

Abstract

AbstractThe current SARS-Covid-2 pandemic has led to an acceleration of messenger – ribonucleic acid (mRNA) vaccine technology. The development of production processes for these large mRNA molecules, especially self-amplifying mRNA (saRNA) has required concomitant development of analytical characterisation techniques. Characterising the purity, shape and structure of these biomolecules is key to their successful performance as drug products. This paper describes the biophysical characterisation of the Imperial College London Self-amplifying viral RNA vaccine (IMP-1) developed for SARS-CoV-2. A variety of analytical techniques have been used to characterise the IMP-1 RNA molecule. In this paper we use UV spectroscopy, dynamic light scattering (DLS), size-exclusion chromatography small angle scattering (SEC-SAXS) and circular dichroism (CD) to determine key biophysical attributes of IMP-1. Each technique provides important information about the concentration, size, shape, structure and purity of the molecule.Statement of significanceThis paper is highly significant as it provides a prescient biophysical characterisation of an efficacious Sars-Cov-2 vaccine self-amplifying (sa)RNA molecule. RNA vaccines have been a major scientific breakthrough of the Covid-19 pandemic. saRNA is a further development of conventional mRNA vaccines, amplifying the RNA of interest in the cell, allowing the vaccine to be administered at lower dosages. These new biologics are distinct from previous biologics and have required distinct analytical characterisation. The analytics described herein provide detailed information on the size, shape, and structure of the RNA molecule. This paper is therefore an important step in characterising large saRNA biological relevant molecules.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3