Author:
Norman Utku,Cicek A. Ercument
Abstract
AbstractWhole exome sequencing (WES) studies for Autism Spectrum Disorder (ASD) could identify only around six dozen risk genes to date because the genetic architecture of the disorder is highly complex. To speed the gene discovery process up, a few network-based ASD gene discovery algorithms were proposed. Although these methods use static gene interaction networks, functional clustering of genes is bound to evolve during neurodevelopment and disruptions are likely to have a cascading effect on the future associations. Thus, approaches that disregard the dynamic nature of neurodevelopment are limited in power. Here, we present a spatio-temporal gene discovery algorithm for ASD, which leverages information from evolving gene coexpression networks of neurodevelopment. The algorithm solves a variant of prize-collecting Steiner forest-based problem on coexpression networks to model neurodevelopment and transfer information from precursor neurodevelopmental windows. The decisions made by the algorithm can be traced back, adding interpretability to the results. We apply the algorithm on WES data of 3,871 samples and identify risk clusters using BrainSpan coexpression networks of earlyand mid-fetal periods. On an independent dataset, we show that incorporation of the temporal dimension increases the prediction power: Predicted clusters are hit more and show higher enrichment in ASD-related functions compared to the state-of-the-art. Code is available at http://ciceklab.cs.bilkent.edu.tr/ST-Steiner/.
Publisher
Cold Spring Harbor Laboratory
Reference61 articles.
1. Prevalence of autism spectrum disorder among children aged 8 yearsautism and developmental disabilities monitoring network, 11 sites, united states;Autism and Investigators;Morbidity and Mortality Weekly Report: Surveillance Summaries,2014
2. Finding undetected protein associations in cell signaling by belief propagation
3. Network biology methods integrating biological data for translational science
4. Disease gene prioritization;PLoS computational biology,2013
5. Reconstruction of the temporal signaling network in salmonella-infected human cells;Frontiers in microbiology,2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献