Learning to select actions shapes recurrent dynamics in the corticostriatal system

Author:

Márton Christian D.ORCID,Schultz Simon R.ORCID,Averbeck Bruno B.ORCID

Abstract

AbstractLearning to select appropriate actions based on their values is fundamental to adaptive behavior. This form of learning is supported by fronto-striatal systems. The dorsal-lateral prefrontal cortex (dlPFC) and the dorsal striatum (dSTR), which are strongly interconnected, are key nodes in this circuitry. Substantial experimental evidence, including neurophysiological recordings, have shown that neurons in these structures represent key aspects of learning. The computational mechanisms that shape the neurophysiological responses, however, are not clear. To examine this, we developed a recurrent neural network (RNN) model of the dlPFC-dSTR circuit and trained it on an oculomotor sequence learning task. We compared the activity generated by the model to activity recorded from monkey dlPFC and dSTR in the same task. This network consisted of a striatal component which encoded action values, and a prefrontal component which selected appropriate actions. After training, this system was able to autonomously represent and update action values and select actions, thus being able to closely approximate the representational structure in corticostriatal recordings. We found that learning to select the correct actions drove action-sequence representations further apart in activity space, both in the model and in the neural data. The model revealed that learning proceeds by increasing the distance between sequence-specific representations. This makes it more likely that the model will select the appropriate action sequence as learning develops. Our model thus supports the hypothesis that learning in networks drives the neural representations of actions further apart, increasing the probability that the network generates correct actions as learning proceeds. Altogether, this study advances our understanding of how neural circuit dynamics are involved in neural computation, showing how dynamics in the corticostriatal system support task learning.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

1. With or without you: predictive coding and Bayesian inference in the brain

2. Frontal cortex function as derived from hierarchical predictive coding;Scientific Reports,2018

3. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments;Frontiers in Human Neuroscience,2011

4. Motivational neural circuits underlying reinforcement learning

5. Activity in prefrontal cortex during dynamic selection of action sequences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3