Abstract
Alternative polyadenylation (APA) enables a gene to generate multiple transcripts with different 3′ ends, which is dynamic across different cell types or conditions. Many computational methods have been developed to characterize sample-specific APA using the corresponding RNA-seq data, but suffered from high error rate on both polyadenylation site (PAS) identification and quantification of PAS usage (PAU), and bias toward 3′ untranslated regions. Here we developed a tool for APA identification and quantification (APAIQ) from RNA-seq data, which can accurately identify PAS and quantify PAU in a transcriptome-wide manner. Using 3′ end-seq data as the benchmark, we showed that APAIQ outperforms current methods on PAS identification and PAU quantification, including DaPars2, Aptardi, mountainClimber, SANPolyA, and QAPA. Finally, applying APAIQ on 421 RNA-seq samples from liver cancer patients, we identified >540 tumor-associated APA events and experimentally validated two intronic polyadenylation candidates, demonstrating its capacity to unveil cancer-related APA with a large-scale RNA-seq data set.
Funder
King Abdullah University of Science and Technology
National Key Research and Development Program of China
National Nature Science Foundation of China
Shenzhen Science and Technology Program
Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献