Specific connectivity with Operculum 3 (OP3) brain region in acoustic trauma tinnitus: a seed-based resting state fMRI study

Author:

Job AgnèsORCID,Kavounoudias AnneORCID,Jaroszynski Chloé,Jaillard Assia,Delon-Martin ChantalORCID

Abstract

ABSTRACTTinnitus mechanisms remain poorly understood. Our previous functional MRI (fMRI) studies demonstrated an abnormal hyperactivity in the right parietal operculum 3 (OP3) in acoustic trauma tinnitus and during provoked phantom sound perceptions without hearing loss, which lead us to propose a new model of tinnitus. This new model is not directly linked with hearing loss and primary auditory cortex abnormalities, but with a proprioceptive disturbance related to middle-ear muscles. In the present study, a seed-based resting-state functional MRI method was used to explore the potential abnormal connectivity of this opercular region between an acoustic trauma tinnitus group presenting slight to mild tinnitus and a control group. Primary auditory cortex seeds were also explored because they were thought to be directly involved in tinnitus in most current models. In such a model, hearing loss and tinnitus handicap were confounding factors and were therefore regressed in our analysis. Between-groups comparisons showed a significant specific connectivity between the right OP3 seeds and the potential human homologue of the premotor ear-eye field (H-PEEF) bilaterally and the inferior parietal lobule (IPL) in the tinnitus group. Our findings suggest the existence of a simultaneous premotor ear-eye disturbance in tinnitus that could lift the veil on unexplained subclinical abnormalities in oculomotor tests found in tinnitus patients with normal vestibular responses. The present work confirms the involvement of the OP3 subregion in acoustic trauma tinnitus and provides some new clues to explain its putative mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3