Abstract
ABSTRACTSexually selected traits are hypothesized to be honest signals of individual quality due to the costs associated with their maintenance, development, and/or production. Testosterone, a sex steroid associated with the development and/or production of sexually selected traits, has been proposed to enforce the honesty of sexually selected traits via its immunosuppressive effects (i.e., the Immunocompetence Handicap Hypothesis) and/or by influencing an individual’s exposure/susceptibility to oxidative stress (i.e., the Oxidation Handicap Hypothesis). Previous work testing these hypotheses has primarily focused on physiological measurements of immunity or oxidative stress, but little is known about the molecular pathways by which testosterone could influence immunity and/or oxidative stress pathways. To further understand the transcriptomic consequences of experimentally elevated testosterone in the context of handicap hypotheses, we used previously published RNA-seq data from studies that measured the transcriptome of individuals treated with either a testosterone-filled or an empty (i.e., control) implant. Two studies encompassing three species of bird and three tissue types fit our selection criteria and we reanalyzed the data using weighted gene co-expression network analysis. Our results show that testosterone-treated individuals exhibited signatures of immunosuppression and we provide some evidence to suggest that the transcriptomic signature of immunosuppression is evolutionarily conserved between the three species. While our results provide no evidence to suggest testosterone mediates handicaps via pathways associated with oxidative stress, they do support the hypothesis that testosterone enforces the honesty of sexually-selected traits by influencing an individual’s immunocompetence. Overall, this study develops a framework for testing testosterone-mediated handicap hypotheses and provides guidelines for future integrative and comparative studies focused on the proximate mechanisms mediating sexually selected traits.
Publisher
Cold Spring Harbor Laboratory