Author:
Dasen Jeremy S.,Barbera Juan-Pedro Martinez,Herman Thomas S.,Connell Shawn O',Olson Lorin,Ju BongGun,Tollkuhn Jessica,Baek Sung Hee,Rose David W.,Rosenfeld Michael G.
Abstract
Understanding the functional significance of the coordinate expression of specific corepressors and DNA-binding transcription factors remains a critical question in mammalian development. During the development of the pituitary gland, two highly relatedpaired-like homeodomain factors, a repressor,Hesx1/Rpx and an activator, Prop-1, are expressed in sequential, overlapping temporal patterns. Here we show that while the repressive actions of Hesx1/Rpx may be required for initial pituitary organ commitment, progression beyond the appearance of the first pituitary (POMC) lineage requires both loss of Hesx1 expression and the actions of Prop-1. Although Hesx1 recruits both the Groucho-related corepressor TLE1 and the N-CoR/Sin3/HDAC complex on distinct domains, the repressor functions of Hesx1 in vivo prove to require the specific recruitment of TLE1, which exhibits a spatial and temporal pattern of coexpression during pituitary organogenesis. Furthermore, Hesx1-mediated repression coordinates a negative feedback loop with FGF8/FGF10 signaling in the ventral diencephalon, required to prevent induction of multiple pituitary glands from oral ectoderm. Our data suggest that the opposing actions of two structurally-related DNA-binding paired-like homeodomain transcription factors, binding to similar cognate elements, coordinate pituitary organogenesis by reciprocally repressing and activating target genes in a temporally specific fashion, on the basis of the actions of a critical, coexpressed TLE corepressor.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献