DeepScope: Nonintrusive Whole Slide Saliency Annotation and Prediction from Pathologists at the Microscope

Author:

Schaumberg Andrew J.,Sirintrapun S. Joseph,Al-Ahmadie Hikmat A.,Schüffler Peter J.,Fuchs Thomas J.

Abstract

AbstractModern digital pathology departments have grown to produce whole-slide image data at petabyte scale, an unprecedented treasure chest for medical machine learning tasks. Unfortunately, most digital slides are not annotated at the image level, hindering large-scale application of supervised learning. Manual labeling is prohibitive, requiring pathologists with decades of training and outstanding clinical service responsibilities. This problem is further aggravated by the United States Food and Drug Administration’s ruling that primary diagnosis must come from a glass slide rather than a digital image. We present the first end-to-end framework to overcome this problem, gathering annotations in a nonintrusive manner during a pathologist’s routine clinical work: (i) microscope-specific 3D-printed commodity camera mounts are used to video record the glass-slide-based clinical diagnosis process; (ii) after routine scanning of the whole slide, the video frames are registered to the digital slide; (iii) motion and observation time are estimated to generate a spatial and temporal saliency map of the whole slide. Demonstrating the utility of these annotations, we train a convolutional neural network that detects diagnosis-relevant salient regions, then report accuracy of 85.15% in bladder and 91.40% in prostate, with 75.00% accuracy when training on prostate but predicting in bladder, despite different pathologists examining the different tissues. When training on one patient but testing on another, AUROC in bladder is 0.7929±0.1109 and in prostate is 0.9568±0.0374. Our tool is available at https://bitbucket.org/aschaumberg/deepscope.

Publisher

Cold Spring Harbor Laboratory

Reference25 articles.

1. R. Ball and C. North . The effects of peripheral vision and physical navigation on large scale visualization. Proceedings of Graphics Interface 2008, pages 9–16, 2008. ISSN 978-1-56881-423-0. URL https://dl.acm.org/citation.cfm?id=1375717.

2. Move to improve

3. Computer Vision – ECCV 2006

4. Visual positioning of previously defined ROIs on microscopic slides

5. Eye Movements as an Index of Pathologist Visual Expertise: A Pilot Study

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3