Orientation to polarized light in tethered flying honeybees

Author:

Kobayashi Norihiro,Okada RyuichiORCID,Sakura MidoriORCID

Abstract

ABSTRACTBehavioral responses of honeybees to a zenithal polarized light stimulus were observed using a tethered animal in a flight simulator. Flight direction of the bee was recorded by monitoring the horizontal movement of its abdomen, which was strongly anti-correlated with its torque. When the e-vector orientation of the polarized light was rotated clockwise or counterclockwise, the bee responded with periodic right-and-left abdominal movements; however, the bee did not show any clear periodic movement under the static e-vector or depolarized stimulus. The steering frequency of the bee was well coordinated with the e-vector rotation frequency of the stimulus, indicating that the flying bee oriented itself to a certain e-vector orientation, i.e., exhibited polarotaxis. The percentage of bees exhibiting clear polarotaxis was much smaller under the fast stimulus (3.6 ° s-1) compared with that of the slow stimulus (0.9 or 1.8 ° s-1). The bee did not demonstrate any polarotactic behavior after the dorsal rim region of its eyes, which mediates insect polarization vision in general, was bilaterally covered with black paint. The bees demonstrated a high preference for e-vector orientations between 120 to 180°. Each bee exhibited similar e-vector preferences under clockwise and counterclockwise stimuli, indicating that each bee has its own e-vector preference, which probably depends on the bee’s previous foraging experience. Our results strongly suggest that the flying honeybees utilize the e-vector information from the skylight to deduce their heading orientation for navigation.Summary statementTethered flying bees exhibited polarotaxis under a zenithal rotating e-vector stimulus, in which their right-and-left abdominal movements were coincident with the rotation of the stimulus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3