Prediction of a plant intracellular metabolite content class using image-based deep learning

Author:

Krishnan Neeraja M,Panda Binay

Abstract

AbstractPlant-derived secondary metabolites play a vital role in the food, pharmaceutical, agrochemical and cosmetic industry. Metabolite concentrations are measured after extraction, biochemistry and analyses, requiring time, access to expensive equipment, reagents and specialized skills. Additionally, metabolite concentration often varies widely among plants, even within a small area. A quick method to estimate the metabolite concentration class (high or low) will significantly help in selecting trees yielding high metabolites for the metabolite production process. Here, we demonstrate a deep learning approach to estimate the concentration class of an intracellular metabolite, azadirachtin, using models built with images of leaves and fruits collected from randomly selected Azadirachta indica (neem) trees in an area spanning >500,000 sqkms and their corresponding biochemically measured metabolite concentrations. We divided the input data randomly into training- and test-sets ten times to avoid sampling bias and to optimize the model parameters during cross-validation. The training-set contained >83,000 fruit and >86,000 leaf images. The best models yielded prediction errors of 19.13% and 15.11% (for fruit), and 8% and 26.67% (for leaf), each, for low and high metabolite classes, respectively. We further validated the fruit model using independently collected fruit images from different locations spanning nearly 130,000 sqkms, with 70% accuracy. We developed a desktop application to scan offline image(s) and a mobile application for real-time utility to predict the metabolite content class. Our work demonstrates the use of a deep learning method to estimate the concentration class of an intracellular metabolite using images, and has broad applications and utility.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Synthetic biology: A global approach;Nature,2014

2. Image-based plant phenotyping with incremental learning and active contours;Ecological Informatics,2014

3. Image based machine learning for identification of macrophage subsets;Scienti_c reports,2017

4. The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants: Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes;Nematologica,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3