PERK inhibition mitigates restenosis and thrombosis - a potential low-thrombogenic anti-restenotic paradigm

Author:

Wang Bowen,Zhang Mengxue,Urabe Go,Chen Guojun,Wheeler Debra,Dornbos David,Huttinger Allyson,Huang Yitao,Nimjee Shahid,Gong Shaoqin,Guo Lian-Wang,Kent K Craig

Abstract

AbstractBackgroundDrug-eluting stents (DES) represent the main-stream management of restenosis following treatments of occlusive cardiovascular diseases. However, DES cannot eliminate instent restenosis yet exacerbate thrombogenic risks. To achieve dual inhibition of restenotic smooth muscle cell (SMC) de-differentiation/proliferation and thrombogenic endothelial cell (EC) dysfunction, a common target in both cell types, has been long-sought after. We evaluated the potential of protein kinase RNA-like endoplasmic reticulum kinase (PERK) as such a target for low-thrombogenic anti-restenotic intervention.Methods and ResultsWe used a rat angioplasty model of restenosis and a FeCl3-induced mouse model of thrombosis. Loss-or gain-of-function was achieved by PERK inhibition (GSK2606414, siRNA) or overexpression (adenovirus). Restenosis was robustly mitigated by GSK2606414 administered either via injected (i.v.) lesion-homing platelet membrane-coated nanoclusters or a perivascular hydrogel; it was enhanced by PERK transgene. Whereas PERK inhibition blocked, its overexpression exacerbated PDGF-induced human aortic SMC de-differentiation (reduced smooth muscle α-actin or αSMA) and proliferation (BrdU incorporation). Further, PERK activity promoted STAT3 activation but inhibited SRF transcriptional (luciferase) activity; its protein co-immunoprecipitated with STAT3 and also MRTF-A, the SRF activator for αSMA transcription. Importantly, PERK inhibition also prevented TNFα-induced impairment of human EC growth and upregulation of thrombogenic tissue factor, both in vitro and ex vivo. In vivo, oral gavage of GSK2606414 preserved ~50% of the normal blood flow 60 min after FeCl3-induced vascular injury.ConclusionsPERK inhibition is dual beneficial in mitigating restenosis and thrombosis, thus implicating a potential design for anti-restenotic intervention to overcome the thrombogenicity of DES.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3