The Evolution of Fluoroquinolone-Resistance inMycobacterium tuberculosisis Modulated by the Genetic Background

Author:

Castro Rhastin A. D.,Ross Amanda,Kamwela Lujeko,Reinhard Miriam,Loiseau Chloé,Feldmann Julia,Borrell Sonia,Trauner AndrejORCID,Gagneux Sebastien

Abstract

AbstractFluoroquinolones (FQ) form the backbone in experimental treatment regimens against drug-susceptible tuberculosis. However, little is known on whether the genetic variation present in natural populations ofMycobacterium tuberculosis(Mtb) affects the evolution of FQ-resistance (FQ-R). To investigate this question, we used a set ofMtbstrains that included nine genetically distinct drug-susceptible clinical isolates, and measured their frequency of resistance to the FQ ofloxacin (OFX)in vitro. We found that theMtbgenetic background led to differences in the frequency of OFX-resistance (OFX-R) that spanned two orders of magnitude and substantially modulated the observed mutational profiles for OFX-R. Furtherin vitroassays showed that the genetic background also influenced the minimum inhibitory concentration and the fitness effect conferred by a given OFX-R mutation. To test the clinical relevance of ourin vitrowork, we surveyed the mutational profile for FQ-R in publicly available genomic sequences from clinicalMtbisolates, and found substantialMtblineage-dependent variability. Comparison of the clinical and thein vitromutational profiles for FQ-R showed that 45% and 19% of the variability in the clinical frequency of FQ-RgyrAmutations in Lineage 2 and Lineage 4 strains, respectively, can be attributed to howMtbevolves FQ-Rin vitro. As theMtbgenetic background strongly influenced the evolution of FQ-Rin vitro, we conclude that the genetic background ofMtbalso impacts the evolution of FQ-R in the clinic.SignificanceNewer generations of fluoroquinolones form the backbone in many experimental treatment regimens againstM. tuberculosis(Mtb). While the genetic variation in natural populations ofMtbcan influence resistance evolution to multiple different antibiotics, it is unclear whether it modulates fluoroquinolone-resistance evolution as well. Using a combination ofin vitroassays coupled with genomic analysis of clinical isolates, we provide the first evidence illustrating theMtbgenetic background’s substantial role in fluoroquinolone-resistance evolution, and highlight the importance of bacterial genetics when studying the prevalence of fluoroquinolone-resistance inMtb. Our work may provide insights into how to maximize the timespan in which fluoroquinolones remain effective in clinical settings, whether as part of current standardized regimens, or in new regimens againstMtb.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3