Characterization of Streptococcus pneumoniae phage-like element SpnCI reveals an enhanced virulent phenotype in the acute invertebrate infection model Galleria mellonella

Author:

McCullor Kimberly,Rahman Maliha,King Catherine,McShan W. Michael

Abstract

AbstractPhage-like elements are found in a multitude of streptococcal species, including pneumococcal strain Hungary19A-6 (SpnCI). The aim of our research was to investigate the role of phage-like element SpnCI in enhanced virulence and phenotypic modulation within Streptococcus pneumoniae. SpnCI was found to significantly enhance virulence within the invertebrate infection model Galleria mellonella. Infections with SpnCI led to a lower mean health score (1.6) and survival percentage (20%) compared to SpnCI null TIGR4 infections (3.85 mean health score and 50% survival). SpnCI remained integrated throughout growth, conferring greater sensitivity to UV irradiation. Change in transcriptional patterns occurred, including downregulation of operons involved with cell surface modelling in the SpnCI containing strain of TIGR4. Kanamycin-tagged SpnCI strain in Hungary19A-6 was inducible and isolated from lysate along with both annotated prophages. No phages were identified by PCR nor electron microscopy (EM) following induction of TIGR4 SpnCIΔstrA suggesting helper-phage dependence for dissemination. EM of lysate showed typical siphoviridae morphology with an average capsid size of 60 nm. Two of sixty capsids were found to be smaller, suggesting SpnCI disseminates using a similar mechanism described for Staphylococcus aureus phage-like element SaPI. SpnCI from lysate infected capsule null strain T4R but was incapable of infecting the encapsulated TIGR4 strain suggesting that capsule impedes phage infection. Our work demonstrates that SpnCI can modulate virulence, UV susceptibility, alter transcriptional patterns, and furthermore, can disseminate via infection within pneumococcus. Further research is necessary to elucidate how SpnCI modulates virulence and what genes are responsible for the enhanced virulence phenotype.ImportanceAlthough vaccines have limited the scope of pneumococcal infections, Streptococcus pneumoniae still remains an important human pathogen. Understanding novel elements, such as SpnCI, that enhance virulence can lead to the development of more targeted therapeutic and diagnostic tools within the clinical realm.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3