Microtranscriptome of contrasting sugarcane cultivars in response to aluminum stress

Author:

Gonçalves Silva Renan,Mateus-Rosa ThiagoORCID,de Castro França Suzelei,Kottapalli Pratibha,Kottapalli Kameswara Rao,Zingaretti Sonia MarliORCID

Abstract

AbstractAlthough metallic elements are required for plant growth, aluminum ions (Al+3) can be considered one of the major abiotic factors affecting productivity. In plants, the presence of Al+3 can result in inhibition of root growth triggering water and nutrient deficiency. Plants under stress conditions undergo gene expression changes in specific genes or post-transcriptional gene regulators as miRNAs that can led to resistance. In this study, we investigated the miRNAs involved in the sugarcane response to aluminum stress. Four miRNA libraries were generated using sugarcane roots of two contrasting (tolerant and sensitive) sugarcane cultivars growing under aluminum stress to identify the miRNAs involved in the sugarcane response. Here we present the first miRNAs sequencing of sugarcane response under aluminum stress. The contrast of the cultivars seen in the field was reflected in the micro transcriptome with opposing expression profile. We selected 394 differentially expressed miRNAs, in both cultivars, 22% were common between cultivars. Real time quantitative polymerase chain reaction was used to validate the differentially expressed miRNAs through high-throughput sequencing in sugarcane roots. Target genes prediction was also analyzed. Our results indicated miRNAs that modulated specific target genes involved in roots development and plant aluminum stress response. Those genes can be the answer to tolerance in sugarcane and used in breeding programs to develop tolerant cultivars.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Food and Agriculture Organization of the United Nations – FAOSTAT. 2017. Available from: http://www.fao.org/faostat/en/#data/QC/visualize

2. Outlook Fiesp. 2013. Projeções para o agronegócio brasileiro. Outlook Fiesp 2023 projeções para o agronegócio brasileiro/Federação das indústrias do estado de São Paulo – São Paulo: FIESP, 115p. Available from: http://bibspi.planejamento.gov.br/handle/iditem/317

3. Aluminium toxicity in plants - A review;J Applicable Chem,2013

4. von Uexküll HR , Mutert E. Global extent, development and economic impact of acid soils. In: Date RA , Grundon NJ , Raymet GE , Probert ME , editors. Plant-soil interaction at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, the Netherlands; 1995.

5. Recent advances in aluminum toxicity and resistance in higher plants;Braz J Plant Physiol,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3