Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia

Author:

Katzoff Ayelet,Miller Nimrod,Susswein Abraham J.

Abstract

Memory that food is inedible in Aplysia arises from training requiring three contingent events. Nitric oxide (NO) and histamine are released by a neuron responding to one of these events, attempts to swallow food. Since NO release during training is necessary for subsequent memory and NO substitutes for attempts to swallow, it was suggested that NO functions during training as a signal of attempts to swallow. However, it has been shown that NO may also be released in other contexts affecting feeding, raising the possibility that its role in learning is unrelated to signaling attempts to swallow. We confirmed that NO during learning signals attempts to swallow, by showing that a variety of behavioral effects on feeding of blocking or adding NO do not affect learning and memory that a food is inedible. In addition, histamine had effects similar to NO on learning that food is inedible, as expected if the transmitters are released together when animals attempt to swallow. Blocking histamine during training blocked long-term memory, and exogenous histamine substituted for attempts to swallow. NO also substituted for histamine during training. Histamine at concentrations relevant to learning activates neuron metacerebral cell (MCC). However, MCC activity is not a good monitor of attempts to swallow during training, since the neuron responds equally well to other stimuli. These findings support and extend the hypothesis that NO and histamine signal efforts to swallow during learning, acting on targets other than the MCC that specifically respond to attempts to swallow.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3