Hybrid sequence-structure based HMM models leverage the identification of homologous proteins: the example of class II fusion proteins

Author:

Tetley R.,Guardado-Calvo P.,Fedry J.,Rey F.,Cazals F.

Abstract

AbstractWe present a sequence-structure based method characterizing a set of functionally related proteins exhibiting low sequence identity and loose structural conservation. Given a (small) set of structures, our method consists of three main steps. First, pairwise structural alignments are combined with multi-scale geometric analysis to produce structural motifs i.e. regions structurally more conserved than the whole structures. Second, the sub-sequences of the motifs are used to build profile hidden Markov models (HMM) biased towards the structurally conserved regions. Third, these HMM are used to retrieve from UniProtKB proteins harboring signatures compatible with the function studied, in a bootstrap fashion.We apply these hybrid HMM to investigate two questions related to class II fusion proteins, an especially challenging class since known structures exhibit low sequence identity (less than 15%) and loose structural similarity (of the order of 15Å in lRMSD). In a first step, we compare the performances of our hybrid HMM against those of sequence based HMM. Using various learning sets, we show that both classes of HMM retrieve unique species. The number of unique species reported by both classes of methods are comparable, stressing the novelty brought by our hybrid models. In a second step, we use our models to identify 17 plausible HAP2-GSC1 candidate sequences in 10 different drosophila melanogaster species. These models are not identified by the PFÅM family HAP2-GCS1 (PF10699), stressing the ability of our structural motifs to capture signals more subtle than whole Pfam domains.In a more general setting, our method should be of interest for all cases functional families with low sequence identity and loose structural conservation.Our software tools are available from the FunChaT package of the Structural Bioinformatics Library (http://sbl.inria.fr).

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Advances in homology protein structure modeling;Current Protein and Peptide Science,2006

2. Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods;JMB,1998

3. A comprehensive review and comparison of different computational methods for protein remote homology detection;Briefings in bioinformatics,2016

4. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

5. Hidden markov models in computational biology: Applications to protein modeling;JMB,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3