Oligomeric states in sodium ion–dependent regulation of cyanobacterial histidine kinase-2

Author:

Ibrahim Iskander M.ORCID,Wang Liang,Puthiyaveetil Sujith,Krauß Norbert,Nield JonORCID,Allen John F.ORCID

Abstract

ABSTRACTTwo-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi, and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical crosslinking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. Furthermore, the action of NaCl appears to be confined to the Hik2 kinase domain.IMPORTANCEBacteria sense change and respond to it by means of two-component regulatory systems. The sensor component is a protein that becomes covalently modified by a phosphate group on a histidine side chain. The response regulator accepts the phosphate group onto an aspartate, with structural and functional consequences, often for gene transcription. Histidine kinase 2 is a sensor of sodium ion concentration and redox potential, regulating transcription of genes for light-harvesting and reaction center proteins of photosynthesis in cyanobacteria and chloroplasts of algae and plants. Using radiolabeling, chemical crosslinking, chromatography and electron microscopy, we find that sodium ion concentration governs the oligomeric state of Histidine Kinase 2 and its phosphorylation by ATP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3