Author:
Barendregt Nicholas W.,Josić Krešimir,Kilpatrick Zachary P.
Abstract
AbstractDecision-making in dynamic environments typically requires adaptive evidence accumulation that weights new evidence more heavily than old observations. Recent experimental studies of dynamic decision tasks require subjects to make decisions for which the correct choice switches stochastically throughout a single trial. In such cases, an ideal observer’s belief is described by an evolution equation that is doubly stochastic, reflecting stochasticity in the both observations and environmental changes. In these contexts, we show that the probability density of the belief can be represented using differential Chapman-Kolmogorov equations, allowing efficient computation of ensemble statistics. This allows us to reliably compare normative models to near-normative approximations using, as model performance metrics, decision response accuracy and Kullback-Leibler divergence of the belief distributions. Such belief distributions could be obtained empirically from subjects by asking them to report their decision confidence. We also study how response accuracy is affected by additional internal noise, showing optimality requires longer integration timescales as more noise is added. Lastly, we demonstrate that our method can be applied to tasks in which evidence arrives in a discrete, pulsatile fashion, rather than continuously.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献