Abstract
ABSTRACTI use the Nernst equation, parameterised with experimental data, to predict that cancer cells will accumulate more of a lipophilic anion than normal cells. This effect is correlated to charge number. Model cancer cells accumulate *100 more of an anion, *103 more di-anion, *106 more tri-anion, *108 more tetra-anion and *1010 more penta-anion (>>1 billion times more). The trend endures, conveying even greater specificity, for higher charge numbers. This effect could be leveraged for cancer therapy. Wherein the lipophilic anion is a toxin that targets some vital cellular process, which normal and cancer cells may even share. It delivers a high, lethal dose to cancer cells but a low, safe dose to normal cells. This mathematical finding conveys the prospect of a broad, powerful new front against cancer.
Publisher
Cold Spring Harbor Laboratory
Reference148 articles.
1. (2012) World Health Organisation (WHO) cancer fact sheet
2. American Cancer Society. Lifetime Risk of Developing or Dying from Cancer. Available online: http://www.cancer.org/cancer/cancerbasics/lifetime-probability-of-developing-or-dying-from-cancer (accessed on 18 June 2015).
3. Hille B (2001) Ion channels of excitable membranes. Sunderland, MA: Sinauer.
4. Yang M , Brackenbury WJ (2013) Membrane potential and cancer progression. Frontiers in physiology 4
5. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model;Disease models & mechanisms,2013
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献