Evidence for strong fixation bias at 4-fold degenerate sites across genes in the great tit genome

Author:

Gossmann Toni I.,Bockwoldt Mathias,Diringer Lilith,Schwarz Friedrich,Schumann Vic-Fabienne

Abstract

ABSTRACTIt is well established that GC content varies across the genome in many species and that GC biased gene conversion, one form of meiotic recombination, is likely to contribute to this heterogeneity. Bird genomes provide an extraordinary system to study the impact of GC biased gene conversion owed to their specific genomic features. They are characterised by a high karyotype conservation with substantial heterogeneity in chromosome sizes, with up to a dozen large macrochromosomes and many smaller microchromosomes common across all bird species. This heterogeneity in chromosome morphology is also reflected by other genomic features, such as smaller chromosomes being gene denser, more compact and more GC rich relative to their macrochromosomal counterparts - illustrating that the intensity of GC biased gene conversion varies across the genome. Here we study whether it is possible to infer heterogeneity in GC biased gene conversion rates across the genome using a recently published method that accounts for GC biased gene conversion when estimating branch lengths in a phylogenetic context. To infer the strength of GC biased gene conversion we contrast branch length estimates across the genome both taking and not taking non-stationary GC composition into account. Using simulations we show that this approach works well when GC fixation bias is strong and note that the number of substitutions along a branch is consistently overestimated when GC biased gene conversion is not accounted for. We use this predictable feature to infer the strength of GC dynamics across the great tit genome by applying our new test statistic to data at 4-fold degenerate sites from three bird species - great tit, zebra finch and chicken - three species that are among the best annotated bird genomes to date. We show that using a simple one-dimensional binning we fail to capture a signal of fixation bias as observed in our simulations. However, using a multidimensional binning strategy, we find evidence for heterogeneity in the strength of fixation bias, including AT fixation bias. This highlights the difficulties when combining sequence data across different regions in the genome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3