Abstract
AbstractPredicting which substances are suitable for consumption during foraging is critical for animals to survive. While food-seeking behavior is extensively studied, the neural circuit mechanisms underlying avoidance of potentially poisonous substances remain poorly understood. Here we examined the role of the insular cortex (IC) to central amygdala (CeA) circuit in the establishment of such avoidance behavior. Using anatomic tracing approaches combined with optogenetics-assisted circuit mapping, we found that the gustatory region of the IC sends direct excitatory projections to the lateral division of the CeA (CeL), making monosynaptic excitatory connections with distinct populations of CeL neurons. Specific inhibition of neurotransmitter release from the CeL-projecting IC neurons prevented mice from acquiring the “no-go” response, while leaving the “go” response largely unaffected in a tastant (sucrose/quinine)-reinforced “go/no-go” task. Furthermore, selective activation of the IC-CeL pathway with optogenetics drove unconditioned lick suppression in thirsty animals, induced aversive responses, and was sufficient to instruct conditioned action suppression in response to a cue predicting the optogenetic activation. These results indicate that activity in the IC-CeL circuit is necessary for establishing anticipatory avoidance responses to an aversive tastant, and is also sufficient to drive learning of such anticipatory avoidance. This function of the IC-CeL circuit is likely important for guiding avoidance of substances with unpleasant tastes during foraging in order to minimize the chance of being poisoned.Significance StatementThe ability to predict which substances are suitable for consumption is critical for survival. Here we found that activity in the insular cortex (IC) to central amygdala (CeA) circuit is necessary for establishing avoidance responses to an unpleasant tastant, and is also sufficient to drive learning of such avoidance responses. These results suggest that the IC-CeA circuit is critical for behavioral inhibition in anticipation of potentially poisonous substances during foraging.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献