An insula-central amygdala circuit for behavioral inhibition

Author:

Schiff HillaryORCID,Bouhuis Anna Lien,Yu Kai,Penzo Mario A.,Li Haohong,He Miao,Li Bo

Abstract

AbstractPredicting which substances are suitable for consumption during foraging is critical for animals to survive. While food-seeking behavior is extensively studied, the neural circuit mechanisms underlying avoidance of potentially poisonous substances remain poorly understood. Here we examined the role of the insular cortex (IC) to central amygdala (CeA) circuit in the establishment of such avoidance behavior. Using anatomic tracing approaches combined with optogenetics-assisted circuit mapping, we found that the gustatory region of the IC sends direct excitatory projections to the lateral division of the CeA (CeL), making monosynaptic excitatory connections with distinct populations of CeL neurons. Specific inhibition of neurotransmitter release from the CeL-projecting IC neurons prevented mice from acquiring the “no-go” response, while leaving the “go” response largely unaffected in a tastant (sucrose/quinine)-reinforced “go/no-go” task. Furthermore, selective activation of the IC-CeL pathway with optogenetics drove unconditioned lick suppression in thirsty animals, induced aversive responses, and was sufficient to instruct conditioned action suppression in response to a cue predicting the optogenetic activation. These results indicate that activity in the IC-CeL circuit is necessary for establishing anticipatory avoidance responses to an aversive tastant, and is also sufficient to drive learning of such anticipatory avoidance. This function of the IC-CeL circuit is likely important for guiding avoidance of substances with unpleasant tastes during foraging in order to minimize the chance of being poisoned.Significance StatementThe ability to predict which substances are suitable for consumption is critical for survival. Here we found that activity in the insular cortex (IC) to central amygdala (CeA) circuit is necessary for establishing avoidance responses to an unpleasant tastant, and is also sufficient to drive learning of such avoidance responses. These results suggest that the IC-CeA circuit is critical for behavioral inhibition in anticipation of potentially poisonous substances during foraging.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3