Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides

Author:

Tanti Arnaud,Lutz Pierre-Eric,Kim John,O’Leary Liam,Turecki Gustavo,Mechawar Naguib

Abstract

ABSTRACTGlial dysfunction is a major feature in the pathophysiology of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) cell functions have been associated with depression, the crosstalk between these two major glial cell types has never been assessed in that context. AS are potent regulators of OL cells and myelination, in part through gap junction-mediated intercellular communication made possible by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins, allowing cytosolic transport and metabolic support to OL cells. Because changes in the expression of AS-specific connexins have been previously reported in the brain of depressed individuals, this study aimed at addressing the integrity of AS-OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of the AS-specific Cx30 in the ACC, and mapped its expression onto oligodendrocyte somas and myelinated axons as well as brain vasculature in post-mortem brain samples from depressed suicides (N=48) and matched controls (N=23). The differential gene expression of key components of the gap junction nexus was also screened through RNA-sequencing dataset previously generated by our group, and validated by quantitative real-time PCR. Our results indicate that Cx30 expression mapping to OL cells is selectively decreased in depressed suicides, an effect that was associated with decreased expression of OL-specific connexins Cx32 and Cx47, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking and function of gap junction channels. These results provide a first evidence of impaired gap junction mediated communication between astrocytes and oligodendrocytes in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3