Reconstructing ancestral gene content by coevolution

Author:

Tuller Tamir,Birin Hadas,Gophna Uri,Kupiec Martin,Ruppin Eytan

Abstract

Inferring the gene content of ancestral genomes is a fundamental challenge in molecular evolution. Due to the statistical nature of this problem, ancestral genomes inferred by the maximum likelihood (ML) or the maximum-parsimony (MP) methods are prone to considerable error rates. In general, these errors are difficult to abolish by using longer genomic sequences or by analyzing more taxa. This study describes a new approach for improving ancestral genome reconstruction, the ancestral coevolver (ACE), which utilizes coevolutionary information to improve the accuracy of such reconstructions over previous approaches. The principal idea is to reduce the potentially large solution space by choosing a single optimal (or near optimal) solution that is in accord with the coevolutionary relationships between protein families. Simulation experiments, both on artificial and real biological data, show that ACE yields a marked decrease in error rate compared with ML or MP. Applied to a large data set (95 organisms, 4873 protein families, and 10,000 coevolutionary relationships), some of the ancestral genomes reconstructed by ACE were remarkably different in their gene content from those reconstructed by ML or MP alone (more than 10% in some nodes). These reconstructions, while having almost similar likelihood/parsimony scores as those obtained with ML/MP, had markedly higher concordance with the coevolutionary information. Specifically, when ACE was implemented to improve the results of ML, it added a large number of proteins to those encoded by LUCA (last universal common ancestor), most of them ribosomal proteins and components of the F0F1-type ATP synthase/ATPases, complexes that are vital in most living organisms. Our analysis suggests that LUCA appears to have been bacterial-like and had a genome size similar to the genome sizes of many extant organisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3