Mechanisms controlling differential promoter-occupancy by the yeast forkhead proteins Fkh1p and Fkh2p: implications for regulating the cell cycle and differentiation

Author:

Hollenhorst Peter C.,Pietz Gregory,Fox Catherine A.

Abstract

The roles of DNA and Mcm1p interactions in determining the overlapping and distinct functions of the yeast cell cycle regulatory transcription factors Fkh1p and Fkh2p were examined. Full-length recombinant Fkh1p and Fkh2p were purified and their binding to bona fide promoters examined in vitro. Each protein bound a variety of target promoters with similar specificity in vitro, consistent with the observation that these proteins bind common promoters in vivo. However, in vivo, the Fkh1p and Fkh2p occupied different target promoters to different extents, suggesting that each was primarily responsible for controlling a different set of genes. Additional in vitro studies provided a mechanistic explanation for this differential promoter-occupancy. Specifically, the Fkh2p, but not the Fkh1p, was capable of binding cooperatively with Mcm1p. The Mcm1p–Fkh2p cooperative binding was enhanced by, but did not require, the presence of a Mcm1p-binding site within a target promoter. Consistent with these data, Mcm1p was present at Fkh-controlled promoters in vivo regardless of whether they contained Mcm1p-binding sites, suggesting a role for Mcm1p at promoters not thought previously to be under Mcm1p control. Analysis of Fkh1p and Fkh2p binding to promoter targets in vivo by use of mutant strains indicated that the two proteins compete for promoter-occupancy at a number of target promoters. We postulate that Fkh1p and a stable Fkh2p/Mcm1p complex compete for binding to target promoters and that the levels and/or binding activity of Fkh1p, but not Fkh2p, are most limiting for promoter-occupancy in vivo. Interestingly, the in vitro DNA-binding assays, using a variety of promoter targets, revealed that bona fide Fkh target promoters contained two or more Fkh-binding sites that allowed the Fkh1p and Fkh2p proteins to form multiple protein–DNA complexes in vitro. Multiple Fkh-binding sites may be a distinguishing feature of bona fide Fkh promoters in yeast and other organisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3