Bias, robustness and scalability in differential expression analysis of single-cell RNA-seq data

Author:

Soneson Charlotte,Robinson Mark D.

Abstract

AbstractBackgroundAs single-cell RNA-seq (scRNA-seq) is becoming increasingly common, the amount of publicly available data grows rapidly, generating a useful resource for computational method development and extension of published results. Although processed data matrices are typically made available in public repositories, the procedure to obtain these varies widely between data sets, which may complicate reuse and cross-data set comparison. Moreover, while many statistical methods for performing differential expression analysis of scRNA-seq data are becoming available, their relative merits and the performance compared to methods developed for bulk RNA-seq data are not sufficiently well understood.ResultsWe present conquer, a collection of consistently processed, analysis-ready public single-cell RNA-seq data sets. Each data set has count and transcripts per million (TPM) estimates for genes and transcripts, as well as quality control and exploratory analysis reports. We use a subset of the data sets available in conquer to perform an extensive evaluation of the performance and characteristics of statistical methods for differential gene expression analysis, evaluating a total of 30 statistical approaches on both experimental and simulated scRNA-seq data.ConclusionsConsiderable differences are found between the methods in terms of the number and characteristics of the genes that are called differentially expressed. Pre-filtering of lowly expressed genes can have important effects on the results, particularly for some of the methods originally developed for analysis of bulk RNA-seq data. Generally, however, methods developed for bulk RNA-seq analysis do not perform notably worse than those developed specifically for scRNA-seq.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. “Highly integrated single-base resolution maps of the epigenome in Arabidopsis”;Cell,2008

2. “Mapping and quantifying mammalian transcriptomes by RNA-Seq”;Nat. Methods,2008

3. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing

4. “mRNA-Seq whole-transcriptome analysis of a single cell”;Nat. Methods,2009

5. Smart-seq2 for sensitive full-length transcriptome profiling in single cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3