Abstract
ABSTRACTThe causes and consequences of spatiotemporal variation in mutation rates remains to be explored in nearly all organisms. Here we examine relationships between local mutation rates and replication timing in three bacterial species whose genomes have multiple chromosomes:Vibrio fischeri, Vibrio cholerae, andBurkholderia cenocepacia. Following five evolution experiments with these bacteria conducted in the near-absence of natural selection, the genomes of clones from each lineage were sequenced and analyzed to identify variation in mutation rates and spectra. In lineages lacking mismatch repair, base-substitution mutation rates vary in a mirrored wave-like pattern on opposing replichores of the large chromosome ofV. fischeriandV. cholerae, where concurrently replicated regions experience similar base-substitution mutation rates. The base-substitution mutation rates on the small chromosome are less variable in both species but occur at similar rates as the concurrently replicated regions of the large chromosome. Neither nucleotide composition nor frequency of nucleotide motifs differed among regions experiencing high and low base-substitution rates, which along with the inferred ~800 Kb wave period suggests that the source of the periodicity is not sequence-specific but rather a systematic process related to the cell cycle. These results support the notion that base-substitution mutation rates are likely to vary systematically across many bacterial genomes, which exposes certain genes to elevated deleterious mutational load.
Publisher
Cold Spring Harbor Laboratory