Abstract
AbstractThe identification of sites of DNA replication initiation in mammalian cells has been challenging. Here, we present unbiased detection of replication initiation events in human cells using BrdU incorporation and single-molecule nanopore sequencing. Increases in BrdU incorporation allow us to measure DNA replication dynamics, including identification of replication initiation, fork direction and termination on individual nanopore sequencing reads. Importantly, initiation and termination events are identified on single-molecules with high resolution, throughout S-phase and across the human genome. We find a significant enrichment of initiation sites within the broad initiation zones identified by population level studies. However, these focussed initiation sites only account for ∼20% of all identified replication initiation events. Most initiation events are dispersed throughout the genome and are missed by cell population approaches. This indicates that most initiation occurs at sites that, individually, are rarely used. These dispersed initiation sites contrast with the focused sites identified by population studies, in that they do not show a strong relationship to transcription or a particular epigenetic signature. Therefore, single-molecule sequencing enables unbiased detection and characterisation of DNA replication initiation events, including the numerous dispersed initiation events that replicate most of the human genome.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献