demuxSNP: supervised demultiplexing scRNAseq using cell hashing and SNPs

Author:

Lynch Michael P.ORCID,Wang YufeiORCID,Gatto LaurentORCID,Culhane Aedin C.ORCID

Abstract

AbstractBackgroundMultiplexing single-cell RNA sequencing experiments reduces sequencing cost and facilitates larger scale studies. However, factors such as cell hashing quality and class size imbalance impact demultiplexing algorithm performance, reducing cost effectivenessFindingsWe propose a supervised algorithm, demuxSNP, leveraging both cell hashing and genetic variation between individuals (SNPs). The supervised algorithm addresses fundamental limitations in demultiplexing with only one data modality. The genetic variants (SNPs) of the subset of cells assigned with high confidence using a probabilistic hashing algorithm are used to train a KNN classifier that predicts the demultiplexing classes of unassigned or uncertain cells. We benchmark demuxSNP against hashing (HTODemux, cellhashR, GMM-demux, demuxmix) and genotype-free SNP (souporcell) methods on simulated and real data from renal cell cancer. Our results demonstrate that demuxSNP outperformed standalone hashing methods on low quality hashing data, improving overall classification accuracy and allowing more high RNA quality cells to be recovered. Through varying simulated doublet rates, we show genotype-free SNP methods are unable to identify biological samples with low cell counts at high doublet rates. When compared to unsupervised SNP demultiplexing methods, demuxSNP’s supervised approach was more robust to doublet rate in experiments with class size imbalance.ConclusionsdemuxSNP is a performant demultiplexing approach that uses hashing and SNP data to demultiplex datasets with low hashing quality where biological samples are genetically distinct. Unassigned cells (negatives) with high RNA quality can be recovered, making more cells available for analysis, especially when applied to data with low hashing quality or suspected misassigned cells. Pipelines for simulated data and processed benchmarking data for 5-50% doublets are publicly available. demuxSNP is available as an R/Bioconductor package (https://doi.org/doi:10.18129/B9.bioc.demuxSNP).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3