Abstract
The sympathetic nervous system is vital in maintaining homeostasis and responding to environmental changes1–3. This regulation is coordinated by the spinal sympathetic preganglionic neurons (SPNs), which influence various organs both through neuronal pathways via postganglionic neurons and through endocrine processes by innervating the adrenal gland. Despite decades of research supporting the concept of selective control within this system1,4–9, the neural circuit organization responsible for the specificity of sympathetic outflow remains poorly understood. Notably, classical anatomical studies in rats have not revealed a definitive molecular code governing SPNs, nor have they confirmed the existence of SPNs strictly corresponding to specific output targets1,6,10,11. To reconcile this discrepancy, we aim to integrate recent transcriptome data of SPNs12,13in mice with viral-genetic toolkits14to map axonal projections and manipulate the functions of SPNs governing the gastrointestinal tract and adrenal gland. Here, we have identified two subtypes of SPNs in the lower thoracic spinal cord, defined at the molecular level, exhibiting non-overlapping patterns of innervation. Chemogenetic manipulations on these distinct SPN subtypes revealed selective impacts on the digestive functions in the gastrointestinal tracts or glucose metabolism mediated by the adrenal gland, respectively. This molecularly delineated parallel labeled-line organization in sympathetic outflows presents a potential avenue for selectively manipulating organ functions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献