Hierarchical determinants of the oxidation-induced mutational landscape in human cells

Author:

Cordero Cameron,Mehta Kavi P. M.,Weaver Tyler M.,Ling Justin A.,Freudenthal Bret D.,Cortez David,Roberts Steven A.

Abstract

Abstract8-oxoguanine (8-oxoG) is a common oxidative DNA lesion, which causes G>T substitutions that compose COSMIC single base substitution signature 18 (SBS18) in human cancers. Determinants of local and regional differences in 8-oxoG-induced mutability are currently unknown. To uncover factors influencing the topology of 8-oxoG-induced mutations, we assessed spontaneous and KBrO3-induced 8-oxoG mutagenesis in human cell lines. KBrO3exposure produced a SBS18-like substitution spectrum and a distinct never-before reported INDEL signature that we also observed in human cancers. KBrO3-induced 8-oxoG lesions occurred with similar sequence preference as KBrO3-induced substitutions, indicating that the reactivity of specific reactive oxygen species (ROS) dictates the trinucleotide motif specificity for 8-oxoG-induced mutagenesis. While 8-oxoG lesions occurred relatively uniformly across chromatin states and nucleosomes, 8-oxoG-induced mutations occurred more frequently in more compact regions of the genome, within nucleosomal DNA, and at inward facing guanines within strongly positioned nucleosomes. Cryo-EM structures of OGG1 bound to nucleosomes indicate that these effects originate from OGG1’s ability to flip outward positioned 8-oxoG lesions into the catalytic pocket with only minor alterations to nucleosome structure, while inward facing lesions occluded by the histone octamer are unrecognized. Mutation spectra from cells with DNA repair deficiencies revealed a hierarchical DNA repair network limiting 8-oxoG mutagenesis in human cells, where OGG1– and MUTY-mediated BER is supplemented by replication-associated factors participating in tolerance of 8-oxoG or derived repair intermediates (i.e. Pol η and HMCES). Surprisingly, analysis of transcriptional asymmetry of KBrO3-induced mutations demonstrated transcription-coupled repair of 8-oxoG in Pol η-deficient cells. Thus, radical chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3