Altered functional connectivity between cortical premotor areas and the spinal cord in chronic stroke

Author:

Braaß HannaORCID,Wolf Silke,Feldheim Jan,Chu Ying,Tinnermann Alexandra,Finsterbusch Jürgen,Büchel Christian,Gerloff Christian,Schulz Robert

Abstract

AbstractBackgroundNeuroscience research has contributed significantly to understanding alterations in brain structure and function after ischemic stroke. Technical limitations have excluded the spinal cord from imaging-based research. Available data are restricted to a few microstructural analyses, and functional connectivity data are absent. The present study attempted to close this knowledge gap and assess alterations in corticospinal activation and coupling changes in chronic stroke.MethodsThirteen well-recovered stroke patients underwent corticospinal functional MRI while performing a simple force generation task. Task-related activation was localized in the ipsilesional primary motor cortex (M1), ventral premotor cortex (PMV), and supplementary motor area (SMA), as well as in the cervical spinal cord. Psycho-physiological interactions and linear modeling were used to infer functional connectivity between cortical motor regions and the cervical spinal cord and their associations with motor deficits.ResultsThe main finding was that PMV and SMA showed topographically distinct alterations in their connectivity with the spinal cord. Specifically, we found a reduced coupling between SMA and the ipsilateral ventral spinal cord and an enhanced coupling between PMV and ventral and intermediate central spinal zones. Lower SMA- and higher PMV-related spinal cord couplings were correlated with residual deficits.ConclusionThis work provides first-in-human functional insights into stroke-related alterations in the functional connectivity between cortical motor areas and the spinal cord, suggesting that different premotor areas and spinal neuronal assemblies might be involved in coupling changes. It adds a novel, promising approach to better understanding stroke recovery and developing innovative models to comprehend treatment strategies with spinal cord stimulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3