Plasma-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems

Author:

Goeminne Ludger J.E.ORCID,Eames AlecORCID,Tyshkovskiy AlexanderORCID,Argentieri M. AustinORCID,Ying KejunORCID,Moqri MahdiORCID,Gladyshev Vadim N.ORCID

Abstract

AbstractAging is a complex process manifesting at the molecular, cell, organ and organismal levels. It leads to functional decline, disease and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying machine learning to plasma proteome data of over fifty thousand human subjects in the UK Biobank and other cohorts, we report organ-specific and conventional aging models trained on chronological age, mortality and longitudinal proteome data. We show how these tools predict organ/systems-specific disease through numerous phenotypes. We find that men are biologically older and age faster than women, that accelerated aging of organs leads to diseases in these organs, and that specific diets, lifestyles, professions and medications are associated with accelerated and decelerated aging of specific organs and systems. Altogether, our analyses reveal that age-related chronic diseases epitomize accelerated organ- and system-specific aging, modifiable through environmental factors, advocating for both universal whole-organism and personalized organ/system-specific anti-aging interventions.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3