BUB1 inhibition sensitizes lung cancer cell lines to radiotherapy and chemoradiotherapy

Author:

Thoidingjam Shivani,Sriramulu Sushmitha,Hassan Oudai,Brown Stephen L.,Siddiqui Farzan,Movsas Benjamin,Gadgeel Shirish,Nyati Shyam

Abstract

AbstractBackgroundLung cancer is a major public health concern, with high incidence and mortality. Despite advances in targeted therapy and immunotherapy, microtubule stabilizers (paclitaxel, docetaxel), DNA intercalating platinum drugs (cisplatin) and radiation therapy continue to play a critical role in the management of locally advanced and metastatic lung cancer. Novel molecular targets would provide opportunities for improving the efficacies of radiotherapy and chemotherapy.HypothesisWe hypothesize that BUB1 (Ser/Thr kinase) is over-expressed in lung cancers and that its inhibition will sensitize lung cancers to chemoradiation.MethodsBUB1 inhibitor (BAY1816032) was combined with platinum (cisplatin), microtubule poison (paclitaxel), a PARP inhibitor (olaparib) and radiation in cell proliferation and radiation sensitization assays. Biochemical and molecular assays were used to evaluate their impact on DNA damage signaling and cell death mechanisms.ResultsBUB1 expression assessed by immunostaining of lung tumor microarrays (TMAs) confirmed higher BUB1 expression in NSCLC and SCLC compared to that of normal tissues. BUB1 overexpression in lung cancer tissues correlated directly with expression of TP53 mutations in non-small cell lung cancer (NSCLC). Elevated BUB1 levels correlated with poorer overall survival in NSCLC and small cell lung cancer (SCLC) patients. A BUB1 inhibitor (BAY1816032) synergistically sensitized lung cancer cell lines to paclitaxel and olaparib. Additionally, BAY1816032 enhanced cell killing by radiation in both NSCLC and SCLC. Molecular changes following BUB1 inhibition suggest a shift towards pro-apoptotic and anti-proliferative states, indicated by altered expression of BAX, BCL2, PCNA, and Caspases 9 and 3.ConclusionA direct correlation between BUB1 protein expression and overall survival was shown. BUB1 inhibition sensitized both NSCLC and SCLC to various chemotherapies (cisplatin, paclitaxel) and targeted therapy (PARPi). Furthermore, we present the novel finding that BUB1 inhibition sensitized both NSCLC and SCLC to radiotherapy and chemoradiation. Our results demonstrate BUB1 inhibition as a promising strategy to sensitize lung cancers to radiation and chemoradiation therapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3