SECRET-GWAS: Confidential Computing for Population-Scale GWAS

Author:

Rosenblum JonahORCID,Dong JuechuORCID,Narayanasamy SatishORCID

Abstract

AbstractGenomic data from a single institution lacks global diversity representation, especially for rare variants and diseases. Confidential computing can enable collaborative GWAS without compromising privacy or accuracy, however, due to limited secure memory space and performance overheads previous solutions fail to support widely used regression methods. We present SECRET-GWAS: a rapid, privacy-preserving, population-scale, collaborative GWAS tool. We discuss several system optimizations, including streaming, batching, data parallelization, and reducing trusted hardware overheads to efficiently scale linear and logistic regression to over a thousand processor cores on an Intel SGX-based cloud platform. In addition, we protect SECRET-GWAS against several hardware side-channel attacks, including Spectre, using data-oblivious code transformations and optimized speculative load hardening. SECRET-GWAS is an open-source tool and works with the widely used Hail genomic analysis framework. Our experiments on Azure’s Confidential Computing platform demonstrate that SECRET-GWAS enables multivariate linear and logistic regression GWAS queries on population-scale datasets (one million patients, four million SNPs, 12 covariates) from ten independent sources in just 4.5 and 29 minutes, respectively.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3