Abstract
ABSTRACTAntisense oligonucleotides (ASOs) are widely used as therapeutics for neurodegenerative diseases, cancers, and virus infections. One class of ASOs functions to enhance protein expression by sequestering the mature microRNA (miRNA) in a double-stranded structure within the RNA-induced silencing complex (RISC). An alternative approach for the targeted control of gene expression is to use ASOs that bind to the pre-elements of miRNAs (pre-miRNAs) and modulate their enzymatic processing. Here, we demonstrate that ASOs can be used to disrupt a specific structural feature, “junction,” within pre-miR-31 that is important in directing efficient processing by the Dicer/TRBP complex. Furthermore, we extend and validate this strategy to pre-miR-144, which has a similar junction-dependent structure-function relationship. We found that a significant number of human pre-miRNAs are predicted to contain junctions, and validated our ASO approach on several members of this group. Importantly, we also verified the application of junction-targeting ASOs for the specific inhibition of pre-miRNA processingin cell. Our study reemphasizes the important roles of RNA structure in regulating Dicer/TRBP processing of pre-miRNAs and provides the framework to develop structure-informed ASOs that serve to inhibit miRNA production.
Publisher
Cold Spring Harbor Laboratory