EEG Analyses of visual cue effects on executed movements

Author:

Suwandjieff PatrickORCID,Müller-Putz Gernot R.

Abstract

AbstractBackgroundIn electroencephalographic (EEG) or electrocorticographic (ECoG) experiments, visual cues are commonly used for timing synchronization but may inadvertently induce neural activity and cognitive processing, posing challenges when decoding self-initiated tasks.New MethodTo address this concern, we introduced four new visual cues (Fade, Rotation, Reference, and Star) and investigated their impact on brain signals. Our objective was to identify a cue that minimizes its influence on brain activity, facilitating cue-effect free classifier training for asynchronous applications, particularly aiding individuals with severe paralysis.Results22 able-bodied, right-handed participants aged 18-30 performed hand movements upon presentation of the visual cues. Analysis of time-variability between movement onset and cue-aligned data, grand average MRCPs, and classification outcomes revealed significant differences among cues. Rotation and Reference cue exhibited favorable results in minimizing temporal variability, maintaining MRCP patterns, and achieving comparable accuracy to self-paced signals in classification.Comparison with Existing MethodsOur study contrasts with traditional cue-based paradigms by introducing novel visual cues designed to mitigate unintended neural activity. We demonstrate the effectiveness of Rotation and Reference cue in eliciting consistent and accurate MRCPs during motor tasks, surpassing previous methods in achieving precise timing and high discriminability for classifier training.ConclusionsPrecision in cue timing is crucial for training classifiers, where both Rotation and Reference cue demonstrate minimal variability and high discriminability, highlighting their potential for accurate classifications in online scenarios. These findings offer promising avenues for refining brain-computer interface systems, particularly for individuals with motor impairments, by enabling more reliable and intuitive control mechanisms.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. Single-trial analysis and classification of ERP components — A tutorial

2. Decoding hand gestures from primary somatosensory cortex using high-density ECoG

3. Vibrotactile Feedback for Brain-Computer Interface Operation;Computational Intelligence and Neuroscience,2007

4. Single-Trial Discrimination of Type and Speed of Wrist Movements from EEG Recordings;Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology,2009

5. Detecting and Classifying Three Different Hand Movement Types through Electroencephalography Recordings for Neurorehabilitation;Medical & Biological Engineering & Computing,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3