Stabilizing transglutaminase 2 in the open conformation results in reactive astrocytes being more neurosupportive

Author:

Emerson Jacen,Delgado Thomas,Hong Matthew,Keillor Jeffrey W.,Johnson Gail VWORCID

Abstract

AbstractAstrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). Inflammatory conditions bring about a range of poorly understood, heterogeneous, reactive phenotypes in astrocytes. Finding ways to manipulate the phenotype of reactive astrocytes, and leveraging a pro-recovery phenotype, holds promise in treating CNS injury. Previous studies have shown that the protein transglutaminase 2 (TG2) plays a significant role in determining the phenotype of reactive astrocytes. Recently it has been demonstrated that ablation of TG2 from astrocytes improves injury outcomes bothin vitroandin vivo. Excitingly, in anin vivomouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopies the neurosupportive effects of TG2 deletion in astrocytes. The focus of this study was to provide insights into the mechanisms by which TG2 deletion or inhibition of TG2 with VA4 result in a more neurosupportive astrocytic phenotype. Using a neuron-astrocyte co-culture model of neurite outgrowth, we show that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix, further validating the ability of VA4 to phenocopy astrocytic TG2 deletion. VA4 treatment of neurons alone had no effect on neurite outgrowth. VA4 covalently binds to active site residues of TG2 that are exposed in its open conformation and are critical for its enzymatic function, and prevents TG2 from taking on a closed conformation, which interferes with its protein scaffolding function. To begin to understand how pharmacologically altering TG2’s conformation affects its ability to regulate reactive astrocyte phenotypes, we assayed the impact of VA4 on TG2’s interaction with Zbtb7a, a transcription factor that we have previously identified as a TG2 interactor, and whose functional outputs are significantly regulated by TG2. The results of these studies demonstrated that VA4 significantly decreases the interaction of TG2 and Zbtb7a. Further, previous findings indicate that TG2 may act as an epigenetic regulator, through its nuclear protein-protein interactions, to modulate gene expression. Since both TG2 and Zbtb7a interact with members of the Sin3a chromatin repressor complex, we assayed the effect of TG2 deletion and VA4 treatment on histone acetylation and found significantly greater acetylation with TG2 deletion or inhibition with VA4. Overall, this work points toward a possible epigenetic mechanism by which genetic deletion or acute inhibition of TG2 leads to enhanced astrocytic support of neurons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3