Multi-omic Analysis Identifies Glioblastoma Dependency on H3K9me3 Methyltransferase Activity

Author:

Xie Qiqi,Du Yuanning,Ghosh Sugata,Rajendran Saranya,Cohen-Gadol Aaron A.,Baizabal José-Manuel,Nephew Kenneth P.,Han Leng,Shen Jia

Abstract

AbstractHistone H3 Lysine 9 dimethylation or trimethylation (H3K9me2 or H3K9me3) marks more than half of the human genome, particularly in heterochromatin regions and specific genes within euchromatic regions. Enzymes catalyzing the methylation of H3K9 have individually been associated with the modulation of gene expression patterns involved in cancer progression, including suppressor of variegation 3-9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, euchromatic histone-lysine N-methyltransferase 1 and 2 (EHMT1/2). However, a comprehensive comparison and understanding of the characteristics and mechanisms of these chromatin-modifying enzymes in cancers remains incompletely understood. In this study, we demonstrated that these six H3K9 methyltransferases differentially expressed in tumors and correlated expression with somatic copy number variations (CNVs) and DNA methylation patterns. Through integrative multi-omics analyses, we identified SUV39H1, SUV39H2, and SETDB1 as the key players among the six H3K9 methyltransferases that exhibited the most significant associations with cancer phenotypes. By incorporating SUV39H1, SUV39H2, and SETDB1, we developed a novel signature termed “H3K9me3 MtSig” (H3K9me3 methyltransferases signature). H3K9me3 MtSig was unique for various tumor types, had prognostic implications and was linked to significant signaling pathways, particularly in glioblastoma (GBM). Furthermore, elevated H3K9me3 MtSig was confirmed in GBM patient-derived cells and tissues. In addition, single-cell expression analysis of H3K9me3 MtSig in GBM tissues demonstrated a pattern related to the G2/M cell cycle and was negatively correlated with immune responses. H3K9me3-mediated repetitive sequence silencing by H3K9me3 MtSig, determined using ChIP-sequencing, contributed to these phenotypes, and inhibiting H3K9me3 MtSig in patient-derived GBM cells suppressed proliferation and increased immune responses. Translationally, H3K9me3 MtSig performed as an independent prognostic factor in a clinical prediction model, and drug susceptibility screening integrating H3K9me3 MtSig identified potential biomarkers and therapeutics for GBM. In summary, H3K9me3 MtSig has the potential to elucidate novel prognostic markers, therapeutic targets, and predictors of treatment response in GBM and other cancer types for clinical intervention.SignificanceDifferential expressions of H3K9 methyltransferases across cancers correlates with clinical outcomes; in GBM, an H3K9me3 methyltransferase signature links to G2/M cell cycle, immune response pathways, and prognosis, aiding biomarker and treatment development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3