msCNVS: medium throughput single cell copy number variation sequencing with barcoded library construction free of preamplification toward clinical implementation

Author:

Lin GuanchuanORCID,Peng Bin,Chen Caiming,Dong Zhanying,Xu Mengchang,Gao Jinyu,Yu Jie,Jia Bei,Luo Chen,Hua Rui,Xiao Changtai,Wang Linlin,Mai Liyao,Zhang Yulong,Lu Yuanfang,He Yuanqiao,Song YaliORCID,Marjani Sadie L,Zhang Weimin,Zhang Junxiao,Zhong Mei,Quan Song,Weissman Sherman M,Zhu Hao,Pan XinghuaORCID

Abstract

AbstractSingle cell copy number variation sequencing (scCNV-seq) is valuable for genomic analysis of a variety of health and disease systems, yet the available methods either depend on either preamplification of the whole genome of each cell, special devices or untracable, which hinder scCNV-seq practice in clinics. Here we provide scalable multiplex scCNV-seq (msCNVS) that allows direct medium-throughput library construction for single cells, which are barcoded individually with Tn5 transposome in a microplate and immediately pooled for downstream processes, elevating the efficiency by orders of magnitude. An algorithm is developed on the distribution of segmented normalized read count density to identify the major peaks associating with integer copy numbers, further improving the accuracy for objective CNV calling. Here msCNVS faithfully distinguishes the unique CNV patterns of 5 cell lines. The individual msCNVS profiles of 70 individual K562 cells highly correlate with the profile of K562 bulk cells (R=0.90-0.98), and the triplicates of HeLa3 bulk cells correlated nearly perfect (R=0.99). The msCNVS CNV profiles of primary cell cultures of amniotic fluid are confirmed by G-banding karyotype analysis and chromosomal microarray analysis. Additionally, the coverage uniformity of msCNVS is superior to that of MDA and MALBAC and approaches what eMDA and DOP-PCR achieves. Furthermore, msCNVS detects CNV deletions in 2 stunted, abnormal blastocysts, one with CNV mosaicism, and uncovered variants of CNVs in circulated tumor cells, cancerous pleural effusion cells, and patient-derived xenograft nuclei. Thus, msCNVS promises a robust, reliable and highly efficient approach to genomic testing of precious and rare cells like those typically obtained in reproductive and cancer clinics.One-Sentence SummaryBy early pooling of multiple single cells individually barcoded with Tn5 transposome, msCNVS enables efficient CNV profiling of rare clinic samples

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3