Abstract
SUMMARYThe COVID-19 pandemic was the most dramatic in the newest history with nearly 7 million deaths and global impact on mankind. Here we report binding index of 305 HLA class I molecules from 18,771 unique haplotypes of 28,104 individuals to 821 peptides experimentally observed from spike protein RBD of 5 main SARS-CoV-2 strains hydrolyzed by human proteasomes with constitutive and immune catalytic phenotypes. Our data read that mutations in the hACE2-binding region RBD496-513of Omicron B.1.1.529 strain results in a dramatic increase of proteasome-mediated release of two public HLA class I epitopes. Global population analysis of HLA class I haplotypes, specific to these peptides, demonstrated decreased mortality of human populations enriched in these haplotypes from COVID-19 after but not before December, 2021, when Omicron became dominant SARS-CoV-2 strain. Noteworthy, currently circulating BA.2.86 and JN.1 lineages contain no amino acid substitutions in RBD496-513thus preserving identified core epitopes.
Publisher
Cold Spring Harbor Laboratory