Optimising the flow of mechanical energy in musculoskeletal systems through gearing

Author:

Polet D TORCID,Labonte DORCID

Abstract

Movement is integral to animal life, and most animal movement is actuated by the same engine: skeletal muscle. Muscle input is typically mediated by skeletal elements, resulting in musculoskeletal systems that are “geared”: at any instant, the muscle force and velocity are related to the output force and velocity only via a proportionality constantG, the “mechanical advantage”. The functional analysis of such “simple machines” has traditionally centred around this instantaneous interpretation, such that a small vs largeGis thought to reflect a fast vs forceful system, respectively. But evidence is mounting that a complete analysis ought to also consider the mechanical energy output of a complete contraction. Here, we approach this task systematically, and use the theory of physiological similarity to study how gearing affects the flow of mechanical energy in a minimalist model of a musculoskeletal system. Gearing influences the flow of mechanical energy in two key ways: it can curtail muscle work output, because it determines the ratio between the characteristic muscle work and kinetic energy capacity; and it defines how each unit of muscle work is partitioned into different system energies, i. e. into kinetic vs. “parasitic” energy such as heat. As a consequence of both effects, delivering maximum work in minimum time and with maximum transmission efficiency generally requires a mechanical advantage of intermediate magnitude. This optimality condition can be expressed in terms of two dimensionless numbers, which reflect the key geometric, physiological, and physical properties of the interrogated musculoskeletal system, and the environment in which the contraction takes place. Illustrative application to exemplar musculoskeletal systems predicts plausible mechanical advantages in disparate biomechanical scenarios; yields a speculative explanation for why gearing is typically used to attenuate the instantaneous force output (Gopt<1); and predicts howGneeds to vary systematically with animal size to optimise the delivery of mechanical energy, in superficial agreement with empirical observations. A many-to-one-mapping from musculoskeletal geometry to mechanical performance is identified, such that differences inGalone do not provide a reliable indicator for specialisation for force vs speed—neither instantaneously, nor in terms of mechanical energy output. The energy framework presented here can be used to estimate an optimal mechanical advantage across variable muscle physiology, anatomy, mechanical environment and animal size, and so facilitates investigation of the extent to which selection has made efficient use of gearing as degree of freedom in musculoskeletal “design”.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Organismal Responses to Changing Environments;Integrative And Comparative Biology;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3